RDP 2020-01: Credit Spreads, Monetary Policy and the Price Puzzle Appendix B: Derivation of Estimators

Model:

B1 π t = α + β X t 1 + γ Z t 1 + ε t
B2 X t = θ r t + t
B3 F t = E t ( π t + 1 ) = ω 1 X t 1 + ω 2 Z t = ω 1 θ r t 1 + ω 2 Z t + ω 1 t 1

OLS estimation equation:

π t = ϕ 0 + ϕ 1 r t 1 + v t

OLS estimator:

π t = α + ϕ 1 r t 1 + γ Z t 1 + ε t + β t 1
ϕ 1 = β θ
ϕ ^ 1 = cov ^ ( r t 1 , π t ) var ^ ( r t 1 ) = cov ^ ( r t 1 , α + ϕ 1 r t 1 + γ Z t 1 + ε t + β t 1 ) var ^ ( r t 1 ) = ϕ 1 var ^ ( r t 1 ) var ^ ( r t 1 ) + γ cov ^ ( r t 1 , Z t 1 ) var ^ ( r t 1 ) = ϕ 1 + γ cov ^ ( r t 1 , Z t 1 ) var ^ ( r t 1 )

Romer and Romer estimation:

First-stage:

B4 r t = ρ 0 + ρ 1 F t + m t
B5 r t = ρ 0 + ρ 1 ( ω 1 θ r t 1 + ω 2 Z t + ω 1 t 1 ) + m t

Second-stage:

π t = κ 0 + κ 1 m ^ t 1 + ξ t

Romer and Romer estimator:

κ ^ 1 = cov ^ ( m ^ t 1 , π t ) var ^ ( m ^ t 1 ) = cov ^ ( m ^ t 1 , α + ϕ 1 r t 1 + γ Z t 1 + ε t + β t 1 ) var ^ ( m ^ t 1 ) = ϕ 1 cov ^ ( m ^ t 1 , r t 1 ) var ^ ( m ^ t 1 ) + γ cov ^ ( m ^ t 1 , Z t 1 ) var ^ ( m ^ t 1 ) = ϕ 1 cov ^ ( m ^ t 1 , ρ 0 + ρ 1 F t 1 + m ^ t 1 ) var ^ ( m ^ t 1 ) + γ cov ^ ( r t 1 + ρ ^ 0 ρ ^ 1 F t 1 , Z t 1 ) var ^ ( m ^ t 1 ) = ϕ 1 var ^ ( m ^ t 1 , m ^ t 1 ) var ^ ( m ^ t 1 ) + γ [ cov ^ ( r t 1 , Z t 1 ) ρ ^ 1 cov ^ ( F t 1 , Z t 1 ) ] var ^ ( m ^ t 1 ) = ϕ 1 + γ [ cov ^ ( r t 1 , Z t 1 ) ρ ^ 1 cov ^ ( ω 1 X t 2 + ω 2 Z t 1 , Z t 1 ) ] var ^ ( m ^ t 1 )

From Equation (B5) cov ^ ( r t1 , Z t1 )= ρ ^ 1 ω 2 var ^ ( Z t1 )

κ ^ 1 = ϕ 1 + γ [ ρ ^ 1 ω 2 var ^ ( Z t 1 ) ρ ^ 1 ω 2 var ^ ( Z t 1 ) ] var ^ ( m ^ t 1 ) = ϕ 1