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Abstract 

What is happening now? The onset of the COVID-19 crisis highlighted the importance of having 

timely data on the economy to help policymakers make more informed decisions. However, the most 

comprehensive measure of activity, GDP, is published with a long lag, thereby limiting its value to 

policymakers as a measure of the current state of the economy. To overcome this information 

deficiency, we develop a monthly activity indicator (MAI) for Australia. The MAI aims to provide 

policymakers with a more immediate snapshot of prevailing economic conditions. We achieve this 

by using a dynamic factor model to summarise the information content from a curated list of 

30 monthly predictors selected for their ability to explain movements in quarterly real GDP growth. 

We undertake a pseudo out-of-sample nowcasting exercise using the MAI in an unrestricted MIDAS 

model and find that nowcasts based on the MAI significantly outperform standard benchmarks. 

Crucially, outperformance is largest during the COVID-19 crisis, emphasising the benefit from 

considering monthly data. Our results demonstrate that the MAI is a useful tool for policymakers to 

gain a better understanding of current economic conditions in Australia. 

JEL Classification Numbers: C32, C53, C55, E32, E37 

Keywords: COVID-19, dynamic factor model, forecast evaluation, GDP growth, MIDAS regression, 
nowcasting, real-time data 
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1. Introduction 

What is happening in the economy now? It is said that the future is uncertain, but so is the present. 

Policymakers operating in this environment need some way to understand what is happening now 

(i.e. current economic conditions). This need for timely information was most acute during the 

COVID-19 crisis when current conditions were rapidly evolving, requiring policymakers to make 

decisions under significant economic uncertainty. Policymakers are further hamstrung because the 

most comprehensive measure of economy activity, gross domestic product (GDP), is published with 

a substantial lag. Indeed, the full effect on economic activity of the first major lockdowns which 

occurred during June quarter 2020 were not realised until the release of National Accounts data in 

early September 2020; more than two months after the reference period.1 This delay limits its value 

to policymakers as a measure of the current state of the economy. Additionally, GDP is often revised 

in subsequent quarters which further limits its usefulness to policymakers for assessing current 

conditions. 

In response, more and more higher-frequency partial indicators have become available in recent 

times; however, they are often not as comprehensive in their scope and coverage as traditional 

measures of economic activity such as GDP. And while these partial indicators do help fill the 

information gap, the signal they provide is often noisy. Further, one indicator might be useful in one 

context but not in another. For example, the unemployment rate is considered a key metric of 

economic activity, but during the COVID-19 crisis the Australian Government introduced the 

‘JobKeeper’ program to keep workers employed, thereby limiting the rise in the unemployment rate 

caused by lockdowns.2 During this period, the underemployment rate was considered to provide a 

more accurate signal. Given this, it is not clear how policymakers should choose which indicator to 

focus on, and if there are multiple indicators available, how much weight they should give to each 

one. The answers to these decisions are subjective and will typically vary with time and across 

policymaker. 

What is required is a method of combining the available partial indicators in a systematic manner to 

smooth out the noise and reveal the underlying signal. The most common tool for achieving this is 

via dynamic factor models (DFMs). DFMs are a dimension reduction technique that can summarise 

the common variation across a panel of time series data.3 In Australia, initial work exploring the 

usefulness of factor models for monitoring economic activity was undertaken by Gillitzer, Kearns and 

Richards (2005). They produced two coincident indicators, one summarising quarterly data and 

another summarising monthly data. Both indicators were estimated using the non-parametric 

methods developed by Stock and Watson (2002) and Forni et al (2000).4 This was followed by 

Sheen, Trück and Wang (2015), who introduced a daily business cycle indicator based on the work 

 

1 The actual publication date was 2 September 2020 (see <https://www.abs.gov.au/statistics/economy/national-

accounts/australian-national-accounts-national-income-expenditure-and-product/jun-2020>). 

2 The JobKeeper scheme was a wage subsidy for businesses introduced in March 2020 by the Australian Government 

to support the economy during the COVID-19 crisis. 

3 For a comprehensive review of DFMs, see Stock and Watson (2016) and references therein. Examples where DFMs 

have been used in policy institutions include: Matheson (2006); Aruoba, Diebold and Scotti (2009); Cunningham 

et al (2012); Bańbura and Modugno (2014); Higgins (2014); Bok et al (2017); and more recently, Lewis et al (2021). 

4 The method proposed by Stock and Watson (2002) uses principal components analysis (PCA) while the method 

developed by Forni et al (2000) uses dynamic PCA. 
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of Aruoba et al (2009). Their method uses a parametric estimation technique involving a state-space 

model estimated using the Kalman filter. 

Besides being a successful tool for monitoring activity, another important use of DFMs is for 

prediction (Stock and Watson 2002), especially in relation to producing nowcasts.5 A significant 

amount of research effort has been devoted to this topic since the early works of Nunes (2005) and 

Giannone, Reichlin and Small (2008) (see Bańbura et al (2013)). However, there has been 

considerably less work done in Australia. For prediction, Gillitzer and Kearns (2007) had success, 

showing factor-based forecasts for key macroeconomic series can outperform standard time series 

benchmarks.6 The benefits of DFMs are less clear when focusing explicitly on nowcasting in Australia 

(Australian Treasury 2018; Panagiotelis et al 2019). Using different estimation techniques both 

suggest the sample mean is a difficult benchmark model to beat in relation to nowcasting quarterly 

GDP growth.7 But, while both works consider higher frequency data (monthly and higher), neither 

exploit this information in their nowcasting investigation. Instead, both convert all series in their 

respective datasets to a quarterly frequency before producing a nowcast.8,9 This is a problem 

because it represents a loss of information. Further, there is extensive research highlighting the 

significant improvement in prediction accuracy that comes from working with mixed frequency 

data.10 

Our work bridges the gap that exists in the literature between employing factor models for 

monitoring and for nowcasting in Australia. Both issues are interrelated and are equally important 

for policymakers, so it is sensible to develop a framework that can achieve both objectives at once. 

In doing so, we build on previous work in Australia by incorporating more recent developments in 

factor modelling and nowcasting. We start by developing a monthly activity indicator (MAI) for 

Australia. The MAI aims to provide policymakers with a more immediate snapshot of prevailing 

economic conditions. We achieve this by using a ‘true’ DFM to summarise the information content 

from a dataset of 30 monthly targeted predictors selected for their ability to explain movements in 

first-release quarterly GDP growth.11 This is an important advance compared to previous studies as 

it links the variable of interest to the estimation of the DFM and has been shown to improve factor 

estimation and predictive ability (Bai and Ng 2008; Bulligan, Marcellino and Venditti 2015). We also 

extend the targeted predictor hard thresholding pre-selection step developed by Bai and Ng (2008) 

when estimating factor models to the mixed frequency setting. Further, the methodology we use to 

estimate the MAI allows us to use an unbalanced dataset which therefore means we can consider a 

 

5 That is, using higher frequency information to predict the current value of an (unpublished) lower frequency variable. 

6 They focused on quarterly data covering the period 1960 to 2005 and produced forecasts using a recursive scheme 

for growth in GDP, non-farm GDP, private final demand, household final consumption expenditure with horizons from 

2, 4 and 8 quarters ahead. The benchmark model was an AR(1) process. 

7 Australian Treasury (2018) follows the Federal Reserve Bank of Atlanta’s ‘GDPNow’ methodology (Higgins 2014) which 

uses a parametric model based on a state-space model to estimate the DFM. In contrast, Panagiotelis et al (2019) 

estimate a static factor model by PCA. To predict GDP, they use the factor-augmented (i.e. diffusion index) model 

approach of Stock and Watson (2002). 

8 Australian Treasury (2008) estimates a monthly factor initially but converts this to a quarterly frequency for use in 

bridging equations. Panagiotelis et al (2019) converts all monthly series in their dataset to quarterly before extracting 

any factors. Both implement temporal aggregation by taking the average of the three months in each quarter. 

9 Anthonisz (2021) is an exception and considers mixed frequency data in his analysis. 

10 For a non-exhaustive list, see Clements and Galvão (2008, 2009), Galvão (2013), Foroni and Marcellino (2014), 

Leboeuf and Morel (2014), Schorfheide and Song (2015), Ferrara and Marsilli (2019), Galvão and Lopresto (2020), 

Siliverstovs (2020), Baumeister and Guérin (2020), and Jardet and Meunier (2022). 

11 Bai and Wang (2015) define a true DFM as one that incorporates dynamics between the observed series and the 

factors. See Section 2 for more details. 
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broader collection of series over a longer time period than the competing indicators produced by 

Gillitzer et al (2005) and Sheen et al (2015). 

Unlike previous nowcasting studies in Australia (e.g. Australian Treasury 2018; Panagiotelis 

et al 2019), which have focused exclusively on quarterly frequency data, we undertake the first 

investigation of nowcasting in Australia using a mixed frequency modelling framework. We exploit 

the MAI’s high-frequency information content within a factor augmented unrestricted MIDAS (MIxed 

Data Sampling) model (FA-U-MIDAS).12 We assess the model’s ability to nowcast first-release 

quarterly GDP growth using a recursive out-of-sample evaluation exercise covering a 34-year period 

(1988:Q2–2022:Q2), longer than previous works including Gillitzer and Kearns (2007), Australian 

Treasury (2018), and Panagiotelis et al (2019). Additionally, since we use monthly data, we can 

generate four nowcasts for each quarterly GDP growth observation as new monthly data becomes 

available across the quarter. Finally, as in previous evaluations, we use the standard benchmark 

forecasting models of the sample mean and an AR(1) process for comparison. 

Our results show that incorporating monthly information provides more accurate predictions 

compared to the benchmark models based on smaller estimated root mean squared error. The 

improvement over the benchmark models (sample mean and AR(1) models) is also found to be 

statistically significant as well.13 Crucially, predictive accuracy of the models with monthly data is 

largest during the COVID-19 crisis compared to the benchmark models relying solely on quarterly 

data, highlighting the benefit to policymakers from having timely information. Our results also 

support previous findings which suggest that model predictive performance can change depending 

on the state of the economy (see Chauvet and Potter (2013), Siliverstovs (2020) and Jardet and 

Meunier (2022)). 

We begin by describing in detail the methods we follow to construct the MAI in Section 2. In Section 3 

we discuss how we use the MAI to predict quarterly GDP growth as well as the steps we follow to 

implement the out-of-sample evaluation exercise before concluding in Section 4. Some additional 

results are provided in the appendices. 

2. Monitoring Activity Using a Combination of Targeted Monthly Indicators 

To construct the MAI, we apply a DFM to a monthly dataset. The dataset will be comprised of series 

which show a statistically significant relationship with quarterly GDP growth since this is our variable 

of ultimate interest. We first discuss the monthly dataset and how we select the series it contains 

before describing the DFM method and estimation results. 

2.1 Monthly activity dataset 

The choice of dataset to use when estimating a DFM is an important part of the process that is often 

underappreciated. There no single agreed upon way to do this in the literature. Indeed, different 

datasets can result in different factor estimates even when using the same estimation technique (Bai 

and Ng 2008). Given this, there is a tendency for researchers to select as many series as possible in 
 

12 For MIDAS, see Ghysels, Santa-Clara and Valkanov (2004) and Ghysels, Sinko and Valkanov (2007). For unrestricted 

MIDAS see Foroni, Marcellino and Schumacher (2015) and for factor augmented MIDAS see Marcellino and 

Schumacher (2010), Ferrara and Marsilli (2019) and Jardet and Meunier (2022). 

13 Curiously, except for Anthonisz (2021), none of the previous studies in Australia conducted examinations comparing 

predictive accuracy using formal statistical tests. 
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the attempt to capture all available information. However, having too many series can be problematic 

for factor estimation as well; especially if many of the series in the dataset are ‘noisy’ (Boivin and 

Ng 2006).14 

Relatedly, other methods for creating datasets from pre-selected series have been proposed to 

generate more accurate forecasts with factor-augmented regressions. Unlike those proposed by 

Boivin and Ng (2006), these methods recommend estimating a factor model using a dataset 

comprised of only those series shown to have predictive power for a ‘target’ variable of interest. 

Importantly, these so-called ‘targeted predictors’ explicitly take account of the object of interest 

which other methods do not. Two prominent strategies include ‘hard’ and ‘soft’ thresholding to 

determine which variables the factors are to be extracted from (Bai and Ng 2008). Under hard 

thresholding, the predictors are ranked based on a pre-test procedure and those that fail to meet 

some criteria are discarded from the dataset. Under soft thresholding, a portion of top ranked 

predictors are kept, where the ordering of the predictors depends on the soft thresholding rule used. 

Bai and Ng (2008) show that factors extracted from a dataset of targeted predictors can result in 

superior forecasting performance.15 

To begin, we compile an ‘extended’ dataset that includes 53 monthly partial indicators covering 

various aspects of the Australian economy. Following Bańbura and Rünstler (2007) we group these 

series into three main categories: ‘hard’ (30 per cent; includes series covering key measures of 

activity such as the labour market); ‘soft’ (36 per cent; includes survey measures which tend to be 

more timely than hard series); and ‘financial’ (34 per cent; includes series such as interest rates, 

equity prices and commodity prices). When available, we include both aggregate and disaggregate 

measures in the dataset (i.e. total credit as well as its sub-components). Some researchers argue 

against this practice; however, the method we use to estimate the DFM is robust to including 

aggregate and disaggregate series.16 The dataset covers the sample period 1978:M2 to 2022:M9 

and was influenced by the number of series available in the early part of the sample.17 However, 

several series in the dataset have later starting and earlier ending periods due to being relatively 

new, so the resulting dataset is ‘unbalanced’ or ‘ragged edge’. 

Before using the dataset, we transform all series to be stationary and standardise them to have zero 

mean and unit variance as is common in the factor modelling literature. Series are made stationary 

by taking logs and/or first differences as appropriate (see Table A1 for details). When doing the 

standardisation, rather than use the full sample mean, we instead follow Kamber, Morley and 

Wong (2018) and implement ‘dynamic demeaning’ for each series using a rolling 20-year backward-

looking estimate of the sample mean as a way of controlling for potential structural breaks in the 

central tendency of each series over the sample period the dataset covers. The decision to use a 

20-year window (instead of a 10-year window as in Kamber et al (2018)) is because until the 

 

14 The reason this is a problem relates to the size of the common component. If too many noisy series are included in 

the dataset, then the average common component will be smaller than permitted by asymptotic theory. 

15 Bair et al (2006) proposed an idea akin to hard thresholding, calling their procedure ‘supervised principal components’. 

They follow similar steps to Bai and Ng (2008), but instead of using the t-statistic to decide which series to retain, Bair 

el al (2006) retain series with coefficient estimates exceeding a threshold in absolute value (with the threshold value 

determined by cross validation). 

16 See Doz, Giannone and Reichlin (2011, 2012), Bańbura et al (2013) and Bańbura and Modugno (2014). These authors 

show that the inclusion of disaggregated data does not deteriorate the performance of the DFM. 

17 For example, an important and timely metric of activity is the Labour Force Survey (LFS) which began in February 1978. 
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COVID-19-induced recession in 2020, the length of the business cycle in Australia was arguably 

longer than elsewhere.18 

Since our main goal is to produce a monthly activity indicator for monitoring the economy at a higher 

frequency than is currently possible and to predict quarterly GDP growth in the near term, we will 

follow Bai and Ng (2008) and implement a pre-selection strategy to our extended dataset to remove 

any uninformative predictors in relation to quarterly GDP growth. Because our dataset is unbalanced, 

we will use their hard thresholding strategy. This involves running a series of separate regressions 

of the target on a single predictor. Each regression includes a set of controls comprised of an 

intercept and lags of the target variable which are the same for all regressions. The predictors are 

then ranked in descending order by the magnitude of the coefficient t-statistic on each predictor. 

Any predictor with a test statistic below some specified threshold significance level is discarded.19,20 

The method we use to estimate the DFM is robust to model misspecification. Hence, one could argue 

there is no need to apply any pre-selection to the dataset since the model will assign the right weight 

to each series (see Bańbura et al (2013)). However, factors extracted from the extended dataset 

will, by construction, be a linear combination of all series in the dataset. Some of these series might 

not be very informative about quarterly GDP growth but will still have some effect on the model 

outputs even if small. That is, no series is likely to be assigned a zero weighting. Therefore, it makes 

sense to only focus on a subset of series found to be informative about the quarterly growth in 

GDP.21 

Instead of using the current release version of GDP, which is a combination of first release, revised 

and fully revised data (Stone and Wardrop 2002), we follow Koenig, Dolmas and Piger (2003)’s 

recommendation and use the first-release version of GDP (Lee et al 2012). We extend Bai and 

Ng (2008)’s hard-thresholding algorithm (which only considers variables at a quarterly frequency) 

to a mixed frequency setting. This is because our target variable is quarterly while our predictors 

are monthly. In this situation, it is typical to perform some type of temporal aggregation such as 

taking the quarter average (i.e. each quarterly observation is the average of the three monthly 

observations in each quarter). However, this could result in a potential loss of information. Instead, 

each monthly series is converted to a quarterly series by stacking the first, second and third months 

in each quarter as three separate quarterly series.22 

Because we have three predictors (i.e. one series each for the first, second and third months of the 

quarter) instead of only one as in Bai and Ng (2008) and Bulligan et al (2015), we cannot implement 

 

18 Until June quarter 2020, Australia had not experienced a recession (using the technical definition of two consecutive 

quarters of negative quarterly GDP growth) since the early 1990s. 

19 The alternative method Bai and Ng propose, soft thresholding, is not suitable for our dataset since the algorithms 

employed to rank series (i.e. LARS, LASSO or the elastic net) require a balanced dataset. 

20 A criticism of hard thresholding suggested by Bulligan et al (2015) is that it tends to select highly collinear predictors. 

This is because hard thresholding only takes account of the bivariate relationship between the target variable and 

each predictor in isolation and does not account for the information contained in other predictors. However, it is not 

really a problem and more likely to be a benefit. Boivin and Ng (2006), Bair et al (2006), Bai and Ng (2008) and Jardet 

and Meunier (2022) all show that forecast accuracy improves by selecting fewer but more informative predictors. One 

possible reason for this finding suggested by Boivin and Ng (2006) is that reducing the number of variables can help 

concentrate the factor structure and enable more efficient estimation. 

21 In all our analyses we work with the compound growth rate of first-release real GDP. 

22 This is the same as the mixed frequency distributed lag model of Koenig et al (2003) and the unrestricted MIDAS 

model of Foroni et al (2015). 
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the same t-statistic to test for significance and rank series as they both do. Instead, we test for the 

joint (linear) significance for all three series at once using a Wald statistic calculated using a HAC 

robust covariance matrix. As controls we include an intercept and, as our sample covers the 

COVID-19 crisis period, a set of seven indicator variables for the periods 2020:Q2 to 2021:Q2 and 

2021:Q4.23 The indicator variables were included to account for the COVID-19 crisis so as not to 

affect the test results and series ranking.24 When running each regression, we adjust the dependent 

variable’s sample length to match the sample length of each predictor which varies by series. 

Because our extended dataset is already relatively small by international standards, we use a less 

restrictive significance level of 10 per cent to gauge significance.25 While this is higher than the 

standard 5 per cent, it helps ensure we have a reasonable sized subset of the extended dataset. 

The outcome from the hard thresholding procedure is a dataset of 30 variables from the original 

53-variable extended dataset.26 Of the three categories, ‘soft’ is the dominant one with 13 series 

(43 per cent); followed by ‘financial’ with 9 (30 per cent) and ‘hard’ with 8 (27 per cent). Figure A1 

shows the 30 series by category and ranked by Wald statistic along with the threshold critical value 

(dashed line). The number of series in the targeted predictor dataset is comparable to the minimum 

suggested by Bai and Ng (2008) and is slightly larger than the 24 series used in the empirical 

application by Bańbura et al (2013) and slightly smaller than the 37 series used by Australian 

Treasury (2018). Further, Panagiotelis et al (2019) mention they find no benefit from considering an 

information set bigger than 20 to 40 variables when forecasting Australian macroeconomic time 

series such as quarterly GDP growth.27 

2.2 Constructing the monthly activity indicator using a dynamic factor model 

DFMs are a popular statistical model for summarising the common (linear) variation contained in a 

panel of time series data and prediction. A key issue of all these previous works is that they not true 

DFMs as per Bai and Wang (2015). Instead, we estimate the MAI using the general form of the DFM 

defined as: 

 
( )

( )

0

0

, 0,

, 0,

iid
s

t i i t i t t

iid
p

t i t i t ti

= −

−=

=  +

=  +

y Λ f ε ε R

f Φ f η η Q

 (1) 

where ty  is a 1N   vector of weakly stationary targeted predictors, tf  is a 1q  vector of the 

dynamic factors, and iΛ  is the dynamic factor loadings for t i−f  with 0,1, ,i s=  and 1, ,t T= . 

Together, the factors and loadings provide a measure of the common variation shared across series 

in the dataset. The dynamic factors are modelled as a VAR(p) process with iΦ  a q q  matrix of 

 

23 The number of indicator variables were determined by examining individual t-statistics. All but the indicator for 

2021:Q1 were significant at the 5 per cent level. 

24 Unlike Bai and Ng (2008), we do not include lags of the dependent variable as additional controls since ACF/PACF 

plots for quarterly GDP growth suggest there is no statistically significant autocorrelation (see Figure A3). 

25 In comparison, monthly datasets in the United States and Europe typically have hundreds of series to consider. 

26 Using the stricter 5 per cent significance level resulted in 24 series being selected, which we felt was too small as it 

was at the lower end of the range of 20 to 40 variables suggested by Panagiotelis et al (2019). 

27 The minimum sample size suggested by Bai and Ng (2008) relates to the PCA-based method for estimating factor 

models. This is not the method we use to estimate the DFM (in Section 2.2). However, our method is identical to both 

Bańbura et al (2013) and Australian Treasury (2018) and Monte Carlo exercises of Doz et al (2011, 2012) show 

substantial robustness to misspecification is achieved by this method even with a small number of variables. 
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autoregressive coefficients (with all roots outside the unit circle). The number of dynamic factors is 

q (the dimension of tf ). 

The covariance matrix of the idiosyncratic component tε  is given by R  with dimension N N  and 

is restricted to be a diagonal matrix. In the state equation, the covariance matrix of tη  corresponds 

to the q q  matrix Q . We assume that   0t tE   =  (i.e. the two noise processes are independent). 

This specification of the DFM has two different sources of dynamics. First, there are s  lagged factors 

representing a dynamic relationship between the observable series ty  and the factors tf . Second, 

the dynamics of the factors are assumed to be captured by a VAR(p) process.28 Bai and Wang (2015) 

argue that it is the first source of dynamics that makes this specification a true dynamic factor model 

because it is these dynamics that make the biggest distinction between dynamic and static factor 

analysis.29 

We estimate the DFM by quasi-maximum likelihood (QMLE).30 Estimation is conducted via the 

expectation-maximisation (EM) algorithm and consists of two parts. First, we estimate the factors 

given the data by running the Kalman filter and Rauch-Tung-Striebel (RTS) smoother recursions (the 

‘E-step’). Second, we use the estimated factors from the previous step to compute the model 

parameters by maximising the expected log-likelihood by regression (the ‘M-step’). This requires us 

to re-cast Equation (1) into its state-space representation given as: 

 
1

t t t

t t t



−

= +

= +

y ΛF

F ΦF Gη
 (2) 

The measurement equation takes the form of a static factor model (Stock and Watson 2002) with 

( )1r q s= +  static factors. Let ( )max , 1k p s= + , then tF  is a 1qk  vector of the dynamic factors 

and their lags, Λ  is a N qk  matrix of dynamic factor loadings, Φ  is a qk qk  companion matrix 

and G  is a qk q  selector matrix. The advantage of using the state-space modelling framework is 

that it can easily and efficiently accommodate unbalanced datasets. See Hartigan and Wright (2023) 

for more details on the parameters and estimation procedure we use. 

2.2.1 Determining the optimal DFM specification 

Before we can estimate the DFM we first need to specify four important features. These are: i) the 

number of dynamic factors ( q ), ii) the number of dynamic loadings ( s ), iii) the lag order for the 

factor VAR in the state equation ( p ), and iv) the ‘named factor’ necessary for identification. 

We use the information criterion developed by Hallin and Liška (2007) to determine the number of 

dynamic factors. This suggests there is only one common dynamic factor in the targeted predictor 

 

28 A third source of dynamics that is sometimes considered involves allowing the idiosyncratic processes to be 

autocorrelated. We do not allow for this as the dynamics in the factors will be sufficient to account for the dynamics 

in the data. 

29 Bai and Wang (2015) regard the specification to be a static factor model when there are no lags in the measurement 

equation (i.e. 0s = ). Luciani (2020) is another example that also implements a DFM with dynamic factor loadings. 

30 Estimation is ‘quasi’-maximum likelihood because the model is misspecified. This comes from assuming that R , the 

covariance matrix of the idiosyncratic component, is diagonal. Further, we also assume that both noise processes are 

Gaussian. However, in large samples, this misspecification has been shown to be no issue to consistently estimating 

the factors and factor loadings (see Doz et al (2012), Bai and Li (2016) and Barigozzi and Luciani (2019)). 
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dataset (see Figure A4).31 To set the number of dynamic factor loadings, we follow the strategy 

implemented in Luciani (2020). This exploits the fact that a dynamic factor model with q  factors 

can be re-cast as a static factor model with ( )1r q s= +  static factors as previously mentioned. 

Practically, we take a balanced subset of the targeted predictor dataset and compare the proportion 

of explained variation from the first r  eigenvalues from the contemporaneous covariance matrix to 

the proportion of variation from the first q  dynamic eigenvalues from the spectral density matrix 

averaged over a grid of frequencies (see Forni et al (2000) and Brillinger (1981) for more details). 

The aim here is to find where there is close agreement between these two measures. Examining 

Table 1 indicates that one dynamic eigenvalue (i.e. 1q = ) explains approximately the same amount 

of variation as three static eigenvalues (i.e. 3r = ) and hence suggests 2s  . Further, Luciani (2020) 

argues that with 2s =  each series in the targeted predictor dataset is capable of loading on the 

dynamic factor in a time window of three months. This is interesting as this window corresponds to 

one quarter. 

Table 1: Explained Variation 

Per cent 

 Eigenvalue 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Dynamic ( q ) 60.0 72.5 80.8 86.8 90.6 93.6 95.9 97.6 98.9 100.0 

Static ( r ) 38.0 55.1 62.3 67.8 72.0 76.1 79.6 82.5 85.0 87.1 

Notes: Dynamic eigenvalues estimated from the spectral density matrix of a balanced subset of the targeted predictor dataset 

averaged over a grid of frequencies from −  to  ; static eigenvalues estimated from the contemporaneous correlation 

matrix of a balanced subset of the targeted predictor dataset. Bold values denote optimal number of factors. 

 

We can check whether Boivin and Ng (2006)’s suggestion that reducing the sample size can ‘sharpen 

the factor structure’ by comparing the amount of explained variation from the extended dataset and 

targeted predictor dataset. Focusing only on the first dynamic eigenvalue, the amount of variation 

explained in a balanced subset of the extended dataset is about 52 per cent (not shown), lower than 

the per cent of explained variation in the pre-screened dataset (Table 1). Hence, removing any series 

considered uninformative in relation to explaining movements in quarterly GDP growth has increased 

the signal-to-noise ratio of the common dynamic factor. 

With only one common factor, the dynamics of the factor follow an AR process instead of a VAR 

process. To determine the lag order of the AR process we set this to one (i.e. 1p = ) based on the 

AIC. 

The final task needed before estimation can take place is identification. To identify the DFM we 

impose the ‘named factor’ normalisation (Stock and Watson 2016), which associates a factor with a 

specific variable.32 In deciding which targeted predictor to make the named factor we put ‘WMI 

 

31 The number of dynamic factors is determined by looking for the second ‘region of stability’ in relation to cS  and 

checking which value of cq  this corresponds to. 

32 This is because the likelihood function of our model is invariant to any invertible linear transformation of the factors. 

That is, for any invertible matrix H  the parameters  , , ,R Q =    and  1 1, , ,H H H H R HQH − − =    are 

observationally equivalent and hence   is not identifiable from the data. To achieve identifiability of  , we need to 

impose an identifying restriction. 
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consumer sentiment’ as the first series because this series has the highest Wald statistic of all the 

30 targeted predictors (see Figure A1). 

2.2.2 Estimation results 

Figure 1 presents the (optimal) filtered estimate of the MAI for the sample period: 1978:M2 to 

2022:M9.33 The MAI reveals three periods of relatively weak activity that correspond with previous 

recessions in Australia, with the most recent being from the COVID-19 crisis (i.e. 1982, 1989–1991 

and 2020). Indeed, the decline in the level of the MAI during this period is the largest ever observed 

in the series. Although the duration was much shorter than compared to the other two time periods 

and is focused predominately in June 2020. 

Figure 1: Monthly Activity Indicator 

 

Note: Shaded bars are Sahm rule recession onset dates for Australia, defined as a ¾ percentage point increase in the three-month 

moving average of the unemployment rate relative to its minimum in the previous twelve months. 

The MAI also shows activity was noticeably weak in two other periods which have not previously 

been considered as recessions as per the technical definition of a recession. The first period, 2001, 

is linked to the aftereffects of the introduction of the GST which caused a significant amount of 

activity to be brought forward. The second period, 2008, corresponds with the global financial crisis 

(GFC). However, both periods together with the three previously acknowledged recessions are 

detected by the so called ‘Sahm rule’ (Sahm 2019). This is an algorithm for detecting the onset of 

recessions based on monthly movements in unemployment and has correctly detected every 

 

33 Three versions of the MAI are available once all the parameters have been estimated using the QMLE procedure. 

These include the predicted, filtered, and smooth estimates. In our analysis we will only focus on the filtered estimate 

of the MAI following Sheen et al (2015), who state that the filtered estimate (based on the full sample parameter 

estimates) is appropriate for conditional forecasting, while the smoothed estimate is appropriate for within-sample 

estimation. 
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recession in the United States since the 1970s as identified by the NBER, with no false positives.34 

We adjust the Sahm rule for Australia and consider a ¾ percentage point increase in the three-

month moving average of the first-release unemployment rate relative to its minimum during the 

previous twelve months to be more appropriate. With no widely recognised recession timing for 

Australia equivalent to the NBER Business Cycle Dating Committee for the United States the 

Sahm rule serves as a useful proxy (see He and Rosewall (2020)). Figure 1 also shows that 

downturns in the MAI appear to occur several months before detection by the Sahm Rule. In this 

sense, the MAI provides an important signalling device for policymakers related to probable 

downturns. 

To understand movements in the MAI over time we need to quantify the contributions of individual 

series. This is something not directly possible to do via non-parametric techniques such as PCA. 

These contributions are not provided as part of the estimation procedure, but they can be obtained 

from the state-space representation of the model in Equation (2). First, we take the state equation 

part of the model and re-write this expression in terms of the updating equation from the Kalman 

filter: 

 ( )( )1 1t t t t t− −= + −F ΦF K y Λ ΦF  (3) 

where tK  is the Kalman Gain at time t  and is of dimension r N  and the other parameters are as 

previously defined. Equation (3) says that the estimate of the common factor at time t  is a linear 

combination of a prediction step (based on information at 1t − ) and an update step based on the 

error in the prediction weighted by the Kalman Gain. This second part gives us the contribution from 

each series to the factor at each time point (see also Sheen et al (2015)). 

Next, let tD  denote a r N  matrix of series-specific contributions and using Equation (3) we can 

get an expression for the update step for each series:35 

 ( )( )1t t t t r−
 = − 
  

D K y Λ ΦF  (4) 

Equation (4) is related to Equation (3) by noting that 1t t t N−= +F ΦF D , where mι  is a column vector 

of 1s with the number of elements specified by m . The first row of tD  for 1, ,t T=  gives the 

individual series-specific contribution to the common dynamic factor tf  as defined in Equation (1). 

Figure 2 plots the contributions to the Kalman filter estimate of the MAI aggregated by data category 

(i.e. hard, soft or financial) for the period January 2000 until July 2022 to allow for a more easy 

interpretation of recent history. 

 

34 For the United States, the Sahm rule signals a recession when the three-month moving average of the national 

unemployment rate rises by a ½ percentage point or more relative to its low during the previous twelve months. 

35 Since our dataset is unbalanced, we must adjust Equation (4) slightly by using the selector matrix tW  as defined in 

Hartigan and Wright (2023), which ensures only the available data are used in estimation. The adjusted equation is: 

( )( )1t t t t t t r−
 = − 
  

D K W y Λ ΦF W  



11 

  

Figure 2: MAI Contribution by Data Category 

 

Note: Contribution to state update in Kalman filter recursions. 

Figure 2 reveals the soft data category is the main contributor to updates in the MAI followed by 

hard and financial data. What is interesting about this observation is that the GFC was typically 

thought of as a financial crisis. However, the break down of the MAI by data category in Figure 2 

reveals the previously discussed weakness in the MAI that occurred during the GFC in Australia was 

primarily due to a decline in soft data and these are mostly sentiment-based series.36 Financial-based 

series only contributed a very small amount during that period. 

This makes sense because during the GFC the economic environment was very uncertain and there 

was a lot of pessimism expressed by both consumers and businesses. However, fears of a serious 

recession turned out to be premature due to a combination of a very large fiscal response by the 

Australian Government, a very aggressive loosening of monetary policy by the RBA and a surge in 

demand for commodities from China. The steady rise observed in the MAI until early 2018 was also 

predominately caused by soft data. More recently, the dramatic movements observed in the MAI 

during the COVID-19 crisis period were due to contributions from both the hard and soft data 

categories, with the financial data category only making a relatively minor contribution. 

This analysis reveals a potential issue that users of the MAI as a measure of activity need to consider. 

While soft data, such as surveys, do have the advantage of being very timely compared to hard data 

categories, they can also provide false signals (Aylmer and Gill 2003). Further, Roberts and 

Simon (2001) conclude that the information content that survey data, such as sentiment indicators, 

does provide is at best only a rough summary of prevailing economic conditions. However, they note 

 

36 Series from the soft data category are also most correlated with the MAI, as shown by the magnitude of the dynamic 

loadings for the top ten ranked series in Figure A5. 
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that in some cases a linear combination of survey indicators (as is the case with a DFM) might not 

be a bad compromise. 

As previously stated, the DFM we use to construct the MAI has been shown to be robust to 

misspecification including conditional heteroskedasticity and ‘fat tails’ (i.e. outliers) when the factors 

are extracted from many variables (see Doz et al (2012) and Bańbura et al (2013)). However, it is 

evident from Figure 1 that the COVID-19 crisis had a substantial effect unlike anything observed 

before on many of the series included in the targeted predictor dataset. Further, Maroz, Stock and 

Watson (2021) document how the COVID-19 crisis resulted in a temporarily large change in 

previously observed patterns of co-movement across a panel of US monthly time series data. While 

they use a different model than we do, it is still important to check the robustness of our model 

estimation. 

The way we do this in our work is to compare two versions of the MAI constructed using parameters 

estimated from the full sample (including the COVID-19 crisis, labelled ‘FS’) and parameters 

estimated up to 2020:M2 (i.e. the pre-COVID-19 crisis, labelled ‘PC’). The results are illustrated in 

Figure 3 (upper panel) while the difference between the two MAI estimates is displayed in the lower 

panel. Visually, both MAI estimates look broadly similar. The main difference is that the PC estimate 

does not fall as dramatically during the worst of the COVID-19 crisis in June 2020. The sample 

standard deviation of the difference measure for the full sample is 0.15, while the sample standard 

deviation of the difference measure for the pre-COVID-19 sample is 0.11. The null hypothesis that 

the sample standard deviation of the full sample difference measure cannot be rejected at standard 

levels of significance.37 

One reason for the smaller observed effect in our case compared to the findings of Maroz et al (2021) 

could be because our dataset does not display the same extreme movements during the COVID-19 

crisis as their dataset. Indeed, they report one series having declined by more than 275 standard 

deviations. In our dataset, the largest decline was much smaller (see Figure A6). Further, given the 

relatively smaller decline observed in the MAI (PC) during the COVID-19 period, it is reasonable to 

argue that we need to include the COVID-19 period to ensure we correctly estimate its effect across 

series and the economy when we turn to nowcasting quarterly GDP growth in the next section. 

 

37 To test statistical significance, we regress the squared difference series on a constant and compute the t-statistic for 

the constant term using a long-run variance estimator. The t-statistic is 0.11 while the p-value is 0.91. 
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Figure 3: COVID-19 Crisis Effect on MAI Estimation 

 

Note: ‘FS’ refers to MAI based on parameters estimated using the full sample; ‘PC’ refers to MAI based on parameters estimated 

using a sample ending 2020:M2 (i.e. pre-COVID-19). 

3. Predicting Quarterly GDP Growth Using the MAI 

In this section we take the estimated MAI from the previous section and develop a framework for 

nowcasting quarterly growth in GDP. To achieve this goal, we will develop a regression model that 

relates the MAI to movements in quarterly GDP growth. This will require us to work with mixed 

frequency data. 

3.1 Modelling mixed frequency data 

When modelling time series of different frequencies, the typical thing to do is convert all time series 

to the lowest observed frequency using temporal aggregation. Usually this involves computing the 

average of the observations of the high-frequency variable that occur between samples of the low-

frequency variable. For example, with monthly/quarterly data this could involve taking the average 

of the three months in the quarter or the last monthly observation in the quarter. The former was 

the approach adopted by previous studies in Australia including Gillitzer and Kearns (2007), 

Australian Treasury (2018), Panagiotelis et al (2019).38 And while it is simple to implement, it discards 

potentially important information about the timing of movements in the high-frequency variable. 

Indeed, the reason we developed the MAI was so we could exploit the timely information it provides. 

Instead, we will employ the MIDAS regression modelling framework (see Ghysels et al (2004) and 

Ghysels et al (2007)). MIDAS regression provides a flexible way to directly exploit all the information 

content of a higher-frequency explanatory variable to predict a lower-frequency dependent variable. 

It achieves this by using highly parsimonious distributed lag polynomials to prevent parameter 

 

38 In addition, Richardson, van Florenstein Mulder and Vehbi (2021) for New Zealand; however, Anthonisz (2021) is an 

exception. 
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proliferation that might otherwise occur.39 MIDAS regression has been successfully used for 

predicting macroeconomic and financial variables. Of relevance to our work, Clements and 

Galvão (2008) show that using monthly information on the current quarter leads to significant 

improvements in forecasts based on coincident indicators. 

An alternative approach that other researchers have used to handle mixed frequency data is to 

specify a state-space model and estimate it using the Kalman filter (e.g. Bok et al 2017).40 However, 

in comparison with MIDAS models no clear ranking of forecast performance between the two 

methods was found (Bai, Ghysels and Wright 2013). Overall, Bai et al conclude that MIDAS and 

state-space models give similar forecasts.41,42 

The simple MIDAS model incorporating a single regressor is given by: 

 ( ) ( )1/
0 1 ;

mm
t t ty L x  = + +  (5) 

where ( ) ( )1/ 1 /
0; ;m K k m

kL W k L −
==   and 1/mL  is a high-frequency lag operator such that 

( ) ( )1/
1/

m mm
t t mL x x −=  with m  indicating the higher sampling frequency of the explanatory variable (for 

example, 3m =  when x  is monthly and y  is quarterly). The intercept is specified by 0  while the 

coefficient 1  captures the overall effect of the high-frequency variable x  on y  and can be identified 

by normalising the function ( )1/ ;mL   to sum to one. We assume the residuals, t  are an 

iid sequence with mean zero and constant variance. Finally, K  is the maximum lag length for the 

included high-frequency regressor. 

The method by which the MIDAS model achieves a parsimonious representation is via the lag 

coefficients in ( );k  . This represents a set of weights as a function of a small dimensional vector 

of j  parameters ( )0 1, , , j   =  with j K . Two common functions used in empirical 

applications include the normalised exponential Almon lag function of Ghysels et al (2004) given as: 

 ( )
( )
( )

2
1 2

0 2
1 1 2

exp
;

exp

j
j

K j
k j

k k k
k

k k k

  
 

  =

+ + +
=

 + + +
 (6) 

  

 

39 MIDAS regression implements a form of temporal aggregation, but unlike using the average for example, the weights 

used by the model are entirely determined by the data. For an introduction to MIDAS regression for macroeconomic 

prediction see Armesto, Engemann and Owyang (2010). 

40 In this approach, quarterly GDP growth is included as an extra observable in the measurement equation in Equation (2) 

when estimating the factor model specified with monthly frequency data. This interpolates quarterly GDP growth 

across the three months in quarter. 

41 In most cases, the state-space model was a little more accurate, but it is also computationally more demanding. 

42 In related work, Schorfheide and Song (2015) show that predictions of real US GDP growth from a mixed frequency 

VAR model are empirically similar to those obtained from an (unrestricted) MIDAS regression. 
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And the normalised beta function of Ghysels et al (2007) given as: 

 ( )
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− −
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=
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 (7) 

Note, Figure B1 illustrates examples of both polynomial weighting functions for different sets of 

parameters. Since both weighting functions are highly nonlinear, MIDAS models featuring either of 

them will need to be estimated by nonlinear least squares. An alternative specification proposed by 

Foroni et al (2015) is ‘unrestricted MIDAS’ (U-MIDAS). This method leaves the high-frequency lag 

coefficients unconstrained and can be estimated by OLS.43 Foroni et al (2015) show that U-MIDAS 

is often preferable to standard (i.e. restricted) MIDAS (R-MIDAS) when modelling quarterly and 

monthly data because m  is small. This reflects the fact that when the number of lags to model is 

relatively small, complications caused from having to estimate more parameters are reduced.44 A 

U-MIDAS model with one explanatory variable is given as: 

 ( ) ( )1/
0

mm
t t ty B L= + +x  (8) 

where ( )1/ 1 /
0

m K k m
k kB L L−
==   and 1/mL  is defined as before. In any case, our x  variable (i.e. the 

MAI) will be a latent common dynamic factor. MIDAS models incorporating factors are typically 

referred to as factor augmented MIDAS (FA-MIDAS) models and have been shown to perform well 

compared to more standard quarterly factor models in short-term forecasting of quarterly GDP 

growth in Germany (see Marcellino and Schumacher (2010)).45 This finding is important for our work 

in two ways. It confirms the benefit to prediction from using mixed-frequency techniques and 

suggests that FA-MIDAS models can exploit time series information more efficiently than existing 

approaches. 

Before we can move onto specifying a MIDAS model for nowcasting quarterly GDP growth using the 

MAI we need to decide on two aspects about the specification we intend to use. First, the functional 

constraints (if any) to implement and second, the optimal maximum lag order K . One way to 

address both issues is to use an information criterion to select the best model in terms of parameter 

restriction and the lag orders based on in-sample model fit. 

 

43 This allows for greater flexibility in how the weights used in temporal aggregation are determined by the data and is 

reminiscent of the mixed frequency distributed lag method introduced earlier by Koenig et al (2003). 

44 However, when the difference in frequencies is large, Foroni et al (2015) find that R-MIDAS outperforms U-MIDAS. 

45 In their analysis the authors also compared a two-step approach (first estimate monthly factors and then estimate the 

forecast of quarterly GDP growth using a FA-MIDAS model) to an integrated approach (estimate monthly factors and 

then forecast using a state-space model). They conclude that the two approaches produce similar forecasts, and 

therefore supports the findings of Bai et al (2013) and our decision to focus on MIDAS models instead of a state-space 

framework. Further, the best performing model in many cases was found to be a simple MIDAS structure without a 

distributed lag term and only one lag of the latent factors. 
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Since the selected model will ultimately be used for nowcasting, we follow standard practice in the 

forecasting literature and use real-time data.46,47 For the dependent variable y  we use first-release 

GDP from Lee et al (2012).48 The main argument for this decision is that data revisions to GDP cause 

an additional issue when nowcasting. If we focus on current GDP, which is a combination of first 

release, partially revised and fully revised data, then we not only have to consider how to nowcast 

the first release of quarterly GDP growth but also how to predict future data revisions. Further, 

revisions to GDP can occur many quarters after the initial release. So, it is reasonable to assume 

analysts are more interested in the initial releases and concerned with the uncertainty related to 

nowcasting the first release than the uncertainty related to the revision process (Galvão and 

Lopresto 2020). 

Unlike with GDP, there is no vintage targeted predictor dataset available for constructing a genuine 

real-time version of the MAI. However, as an alternative, we use the estimate of MAI produced by 

the Kalman filter for the reason previously discussed about it being more appropriate for prediction 

since it only incorporates information up to time t . Further, it is also conceptually similar to the 

definition of a real-time variable provided by Koenig et al (2003).49 

We follow Foroni et al (2015) and use the BIC to evaluate a range of restricted and unrestricted 

MIDAS models. For the R-MIDAS models, we consider the normalised exponential Almon weighting 

function with 2j =  and 3j =  parameters. We also consider the normalised beta weighting function 

with 3j =  parameters. For all MIDAS model specifications, we specify four values for the maximum 

lag of the monthly explanatory variable (i.e.  2,3,4,5K ).50 The results are presented in Table 2. 

The BIC strongly prefers the U-MIDAS specification with maximum lag 5K = , this is closely followed 

by the U-MIDAS model with maximum lag 6K = . Indeed, all U-MIDAS models are superior to the 

two R-MIDAS models except for when the maximum lag is two ( 2K = ). In this case, the R-MIDAS 

model using the normalised exponential Almon polynomial weighting function with two parameters 

( 2j = ) is preferred. 

In addition to comparing models based on the BIC, it is also possible to test the empirical adequacy 

of the polynomial weighting functions used with the R-MIDAS specifications under standard 

assumptions via a Wald-type test. The null hypothesis is that the functional restrictions are valid. 

Therefore, rejecting the null implies the functional restrictions are not supported by the data. By this 

 

46 As noted by Clements and Galvão (2009), there are two ways of using vintage data to estimate a model in real time. 

First, use the ‘end-of-sample’ vintage. In this case, for each t  the most current vintage data are used to estimate the 

model. Second, use ‘real-time’ vintage data. Under this approach, for each t  the initially available data are used to 

estimate the model. This approach was introduced by Koenig et al (2003) to overcome an issue with the first method. 

The problem is that any given vintage of data will be a combination of first releases, partially revised and fully revised 

data. Koenig et al claim that model parameters estimated using the first method will be inconsistent. Importantly, the 

results of Koenig et al and Clements and Galvão (2008) suggest the real-time vintage method produces more accurate 

predictions of output growth in the United States using distributed lag and MIDAS models. 

47 A notable exception is Panagiotelis et al (2019), who only consider current vintage data in their work. 

48 This is also comparable to Koenig et al (2003) in relation to forecasting US quarterly GDP growth and Galvão and 

Lopresto (2020) in relation to nowcasting UK quarterly GDP growth. 

49 The steps we follow to estimate the real-time MAI is as follows. First, we estimate all the parameters of the model 

using the QMLE method. Second, we take the final parameter estimates and re-run the Kalman filter again using those 

parameter values and the targeted predictor dataset. 

50 All estimation was done in R using the ‘midasr’ package of Ghysels, Kvedaras and Zemlys (2016). 
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metric, only one R-MIDAS model specification is consistent with the data, corresponding to the 

normalised exponential Almon polynomial weighting function with 2K =  and 2j = . 

Table 2: MIDAS Model Comparison 

Lag 

0 : K  

Normalised exponential Almon  Normalised beta  

U-MIDAS 2j =   3j =   3j =   

BIC p-value  BIC p-value  BIC p-value  BIC p-value 

0:2 486.88 0.86  492.05 0.00  505.09 0.00  491.35 na 

0:3 500.63 0.00  492.06 0.00  492.06 0.00  437.71 na 

0:4 501.95 0.00  492.06 0.00  492.08 0.00  417.46 na 

0:5 502.19 0.00  492.06 0.00  492.24 0.00  422.58 na 

Notes: The variable j  is the number of parameters in the polynomial weighting function used in the MIDAS regression; the p-value 

is for the test of the null hypothesis of whether the restrictions on the MIDAS coefficients implied by the polynomial weighting 

function are supported by the data. Bold values denote best model. 

 

3.2 Out-of-sample prediction comparison 

In this section we will assess the nowcasting performance of MIDAS models incorporating the MAI 

compared to standard benchmark models in a pseudo out-of-sample (OOS) comparison exercise. 

Based on the findings of the model evaluations presented in Table 2 we will only consider the FA-U-

MIDAS specification for nowcasting quarterly GDP growth. However, instead of setting 5K =  as 

suggested by the BIC, we set 6K = . This choice is motivated by previous work (see Koening 

et al (2003) and Leboeuf and Morel (2014)) and because it covers the months most likely to affect 

quarterly GDP growth (i.e. three months of data covering the quarter for which we observe the last 

value of real GDP growth and the three months of data covering the first quarter to nowcast).51 

We do not consider longer horizon predictions of quarterly GDP growth as in other studies. This is 

because predicting output growth over longer horizons is known to be much less reliable 

(e.g. Marcellino and Schumacher (2010) for FA-MIDAS models, Bańbura et al (2013) for factor 

models, and Chauvet and Potter (2013) for a systematic evaluation more generally). As such, the 

methods we develop here should only be thought of as short-term prediction devices. 

An important advantage of MIDAS regression over other methods used for handling mixed frequency 

data (i.e. temporal aggregation) is that it allows us to make predictions within periods. Further, each 

successive prediction will incorporate a new estimate of the MAI as more data becomes available in 

the quarter. For simplicity, we assume the following timing of data releases. Let ty  denote the 

current quarter of quarterly GDP growth and 1ty +  denote the next quarter of quarterly GDP growth. 

The first release of GDP for quarter t  contains data up to quarter 1t − . Before data on GDP growth 

for t  become available in quarter 1t + , we will have four updates of the MAI. First estimate of the 

MAI incorporating monthly data up to 1t −  in 2 / 3t −  (i.e. first month of current quarter), second 

estimate of the MAI incorporating monthly data up to 2 / 3t −  in 1/ 3t −  (i.e. second month of 

current quarter), third estimate of the MAI incorporating monthly data up to 1/ 3t −  in t  (i.e. end 

of the current quarter). Finally, a fourth estimate of the MAI incorporating monthly data up to t  in 

1/ 3t +  (i.e. first month of the next quarter). The timing of these monthly updates of the MAI allows 

us to produce four predictions of quarterly GDP growth in the current quarter which we label as 

 

51 As already noted, the BIC ranks the U-MIDAS model with six lags second in terms of model suitability. 
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i) forecast (FC), ii) nowcast in month 1 (M1), iii) nowcast in month 2 (M2), and iv) nowcast in 

month 3 (M3).52 See Figure 4 for a visual summary. 

Figure 4: GDP Nowcasting Timeline 
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Based on this, the general FA-U-MIDAS model we use in the OOS evaluation becomes: 

 
( )1 /

0
mK k m

t k i k t ty L x −
== + +  (9) 

where ty  is first-release quarterly GDP growth, tx  is the MAI and  3,2,1,0i  depending on the 

monthly flow of data during the quarter (i.e. corresponding to the four predictions: FC, M1, M2, M3, 

in that order). Hence, as new monthly estimates of the MAI are produced during the quarter, the 

specification of the FA-U-MIDAS model will change with an increasing number of regressors. For 

example, when 3i =  (i.e. FC), the FA-U-MIDAS model for current quarterly GDP growth consists of 

an intercept and three months of data on the MAI from the previous quarter: 

 0 1 1 2 4/3 3 5/3t t t t ty x x x   − − −= + + + +  (10) 

Alternatively, when 0i = , the model expands to include three additional months of data on the MAI 

from the current quarter (reflecting the full model): 

 0 1 2 1/3 3 2/3 4 1 5 4/3 6 5/3t t t t t t t ty x x x x x x      − − − − −= + + + + + + +  (11) 

Note, for ease of notation, we drop the superscript ( )m  from the x  variable in both equations. 

Across the OOS evaluation period we will keep the FA-U-MIDAS model specification fixed to this 

general form.53 Further, we will compare the four FA-U-MIDAS model specifications to two standard 

models used in previous OOS forecasting/nowcasting evaluation exercises. These include the sample 

mean and an AR(1) process (see Australian Treasury (2018) and Panagiotelis et al (2019) for the 

sample mean and Gillitzer and Kearns (2007) for the AR(1) process). The sample mean has been 

shown to be a formidable forecasting model for quarterly growth in GDP (Panagiotelis et al 2019) 

and will serve as our benchmark model in our comparisons. Additionally, we also consider a model 

 

52 Predictions made using M3 are sometimes labelled as ‘backcasts’, that is, those that are backwards looking or that are 

made (shortly) after the end of the quarter of interest (see Siliverstovs (2020) and Chinn, Meunier and 

Stumpner (2023), who both use the same four-period horizon). 

53  This MIDAS model framework is reminiscent of Koenig et al (2003) and Leboeuf and Morel (2014), who both also use 

fixed model specifications in their work. 
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based on a quarter average (QA) measure of the MIA as a crosscheck.54 The QA model includes a 

temporal aggregated value of the MAI for the current quarter and another lagged value for the 

previous quarter, making it similar to M3. 

To evaluate the performance of the various models, we carry out a recursive estimation and 

forecast/nowcasting exercise, where the full sample is split into estimation and evaluation sub-

samples. The estimation sample initially covers the period 1978:Q2–1988:Q1 (i.e. 40R =  or 

10 years, similar to Panagiotelis et al (2019)) and is expanded by one quarter at a time and the 

model parameters are re-estimated each time. The evaluation sample is between 1988:Q2 and 

2022:Q2 (i.e. 137P = ). For each quarter in the evaluation sample, we want to compute a forecast 

and three nowcasts depending on the monthly information set. For example, for the initial evaluation 

quarter 1988:Q2, we want to compute a forecast using data up to 1988:Q1 (FC) and then a nowcast 

in 1988:M4 (M1), 1988:M5 (M2) and 1988:Q2 (M3). At this point we also compute the sample mean 

and AR(1) forecasts. The predictions from each model over the evaluation sample are presented in 

Figure 5. 

Figure 5: Quarterly Real GDP Growth Predictions 

 

Note: GDP is first release. 

Sources: ABS; Authors’ calculations; Lee et al (2012). 

The sample mean and AR(1) predictions are very similar given the lack of persistence in quarterly 

GDP growth, although the AR(1) model was slightly better at predicting the COVID-19 decline in 

2020:Q2, albeit with a quarter lag. Since both models are estimated using quarterly data, neither 

were able to fully anticipate the significant fall and immediate rise that eventuated in 2020:Q2 and 

2020:Q3. In contrast, the models incorporating monthly information performed much better. 

Predictions from each model are reasonably similar in the period before the COVID-19 crisis, but all 

 

54 The QA model is a special type of R-MIDAS model in which the weights are constrained to be uniform (i.e. equal to 

1/3 in each month). Further, uniform weights are equivalent to the normalised exponential Almon function with the 

first parameter set to 1 and the rest set to 0 and the normalised beta function with all parameters set to 1. 
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models show noticeable differences in the period afterwards. For example, model M1 was most 

accurate in predicting the contraction in quarterly GDP growth in 2020:Q2, although it was still off 

by around 2 percentage points. Alternatively, model M3 was relatively less successful. This is 

surprising, since model M3 has two extra months of data on 2020:Q2 and previous research has 

shown that having more timely data usually improves forecast accuracy.55 One explanation could be 

that model M3 has two additional parameters to estimate compared to model M1 and increased 

estimation uncertainty could be affecting the model’s accuracy. 

In relation to predicting the large subsequent upswing in quarterly GDP growth in 2020:Q3, more 

success was achieved by models FC and QA. This is also surprising since both models contain less 

information on the quarter compared to the three ‘M’ models. However, both models have less 

parameters to estimate compared to the other models (FC with three and QA with only two) and 

therefore could be more precisely estimated, improving the accuracy of both models. 

We assess point forecast/nowcast accuracy of each model considered using standard root mean 

squared error (RMSE) defined as: 

 ( )
2

1

1
ˆ

P

t tt
RSME y y

P =
= −  (12) 

where ˆty  is the forecast/nowcast produced by one of the models and P  is the number of predictions 

being assessed. We compare RMSEs over three different horizons: the past three years, the past 

ten years, and the full evaluation sample period. We do this comparison for the full sample which 

includes the COVID-19 period as well as a sample that ends in 2019:Q4, excluding the effects of the 

COVID-19 crisis as a robustness check. The results are presented in Table 3 which provides both 

the raw RMSEs for each model computed using Equation (12) as well as the RMSE for each model 

relative to the sample mean model. A relative RMSE greater than one implies the model’s predictions 

are less accurate compared to the benchmark model while a relative RMSE less than one implies the 

model’s predictions are more accurate than the benchmark model.56 

For the full sample period, model M1 outperforms all other models across each of the three horizons. 

In relative terms, model M1’s RMSEs are over half of those of the sample mean model across the 

past three-year and ten-year periods and just under three-quarters of the benchmark model for the 

full sample. The QA model was the only other model that achieved a similar level of performance 

for the full sample horizon. As previously discussed in relation to Figure 5, this result is primarily 

because of how well model M1 predicted the significant decline in quarterly GDP growth that 

occurred in 2020:Q2. This is supported by comparing the model RMSEs in the pre-COVID-19 period. 

Here, there is no one model that outperforms the others in all periods as was the case when the 

COVID-19 period was included. Further, all model RMSEs are notably lower and much closer together 

as well. The models incorporating monthly information are not as dominant either. Indeed, the three 

‘M’ models are outperformed by the sample mean model in both the shorter three-year and longer 

full sample horizons. In contrast, the QA model does narrowly outperform the benchmark model 

 

55 One exception is Chinn et al (2023), who also do not find a uniform improvement in accuracy as more information 

becomes available when nowcasting world trade volumes using a similar four-horizon setting. 

56 Note that an RMSE close to one implies the uncertainty in the model’s prediction is comparable to the variability of 

quarterly GDP growth since the unconditional sample standard deviation of quarterly growth is approximately one over 

the sample period we work with. 
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across all three horizons, suggesting that there is always some benefit to using timely information 

to make predictions. However, it also suggests that there might exist a trade-off between model size 

and accuracy, especially when making predictions during relatively ‘normal’ periods. 

Table 3: Model Prediction Accuracy Comparison 

 Sample mean AR(1) FC M1 M2 M3 QA 

Full sample 

 Root mean squared error 

Past three years 2.72 2.83 2.11 1.24 1.72 2.23 1.49 

Past ten years 1.52 1.58 1.19 0.74 1.00 1.26 0.87 

All 0.98 1.01 0.87 0.70 0.78 0.88 0.70 

 Relative root mean squared error 

Past three years na 1.04 0.77 0.45 0.63 0.82 0.55 

Past ten years na 1.04 0.79 0.49 0.65 0.83 0.57 

All na 1.03 0.89 0.71 0.79 0.89 0.71 

Pre-COVID-19 sample 

 Root mean squared error 

Past three years 0.30 0.30 0.35 0.34 0.33 0.36 0.29 

Past ten years 0.46 0.47 0.45 0.43 0.45 0.46 0.45 

All 0.59 0.59 0.64 0.62 0.61 0.60 0.56 

 Relative root mean squared error 

Past three years na 1.00 1.18 1.15 1.10 1.21 0.98 

Past ten years na 1.03 0.98 0.94 0.97 1.01 0.97 

All na 1.00 1.09 1.06 1.05 1.03 0.96 

Notes: Relative to sample mean model. Full sample: 1988:Q2–2022:Q2; pre-COVID-19 sample: 1988:Q2–2019:Q4. Bold values 

denote best model(s) for each horizon. 

 

When comparing our results to those of previous studies related to forecasting/nowcasting quarterly 

GDP growth, it is only fair to focus exclusively on our pre-COVID-19 sample results. In this light, our 

results still show a clear benefit to using higher frequency (monthly) data for predicting lower 

frequency (quarterly) data. Both Australian Treasury (2018) and Panagiotelis et al (2019), who each 

focus on quarterly data, are unable to consistently outperform the sample mean benchmark model. 

However, Australian Treasury’s model can beat the sample mean model once all data on the current 

quarter are available (the timing of which would be comparable to our M3 and QA models). In 

contrast, all FA-U-MIDAS models except M3 outperform the sample mean model on average over 

the last ten years, while the QA version shows outperformance across this timeframe as well as over 

the last three years and full sample (1988:Q2–2019:Q4). 

3.3 Evaluating model performance during the COVID-19 crisis 

As shown in Table 3, the three-year horizon which covered the COVID-19 crisis shows substantial 

divergence in the accuracy of model predictions incorporating monthly and quarterly information. 

Most of this outcome can be attributed to one time point: June 2020 – the quarter that experienced 

the brunt of the initial government-mandated COVID-19 lockdowns and the subsequent disruption 

to economic activity that resulted. The prediction error generated for each model relative to the 
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actual first-release quarterly GDP growth outcome for that period is presented in Figure 6. A value 

above one means the prediction error was larger than the actual GDP outcome, while a value less 

than one signifies the prediction error was smaller than the actual GDP outcome. 

Figure 6: Relative Forecast/Nowcast Error Comparison – 2020:Q2 

 

Note: Errors are relative to first-release quarterly GDP growth in 2020:Q2 (–7 per cent). 

Figure 6 helps illustrate how incorporating high frequency (monthly) information greatly improved 

forecast/nowcast performance for most FA-U-MIDAS model predictions for this quarter, especially 

model M1 (which includes the month of April 2020 in its nowcast). Model M1 achieved a nowcast 

error equivalent to roughly one-quarter of the size of the eventual downturn that occurred in 

quarterly GDP growth (–7 per cent). What is crucial about this from a policymaker’s perspective is 

the nowcast from model M1 was capable of being generated midway through the quarter in question 

– almost three months before the official figure on GDP would finally be published. Thereby giving 

policymakers a very timely reading on how the COVID-19 crisis was affecting activity. 

Like with the prediction results, the errors for models M2 and M3, which include more timely 

information, are also both substantially larger than model M1. The performance of the QA model, 

which uses a temporal aggregated version of the MAI (i.e. three-month average), appears to strike 

a compromise between the three MIDAS models; suggesting there might be situations when it is 

beneficial to use temporal aggregated regressors in models, potentially in cases when the model 

might be otherwise over-parameterised. However, our key result that incorporating timely 

information can improve model prediction accuracy during downturns corresponds to previous work 

including Clements and Galvão (2009) (the US recession in 2001), Schorfheide and Song (2015) (the 

GFC impact on US economic activity in 2008) and Jardet and Meunier (2022) (the COVID-19 

pandemic’s effect on world GDP growth). 
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3.4 Assessing the predictive content of the MAI 

The relative RMSE results in the previous section indicate that models incorporating monthly 

information generate more accurate predictions (and smaller errors) compared to the baseline 

sample mean model. However, to be definitive, it is important we compare model performance using 

a formal statistical test of equal predictive accuracy. 

We cannot use the well-known Diebold-Mariano-West (DMW) t-type test for equal predictive 

accuracy since we are evaluating nested models (all models include an intercept). Instead, we follow 

the approaches of Clark and McCracken (2005) and Clements and Galvão (2009) and implement the 

bootstrap version of the MSE-F test of equal mean squared error (MSE) developed by 

McCracken (2007).57 Let iMSE  denote the MSE from model i  for ( ) AR 1 ,FC, M1,M2,M3,QAi , 

then the test of equal predictive accuracy of the benchmark sample mean model (i.e.  ) and the 

alternative model specifications considered are implemented using the following test statistic: 

 
( )

-
i

i

MSE MSE
MSE F P

MSE

 −
=   (13) 

where P  is the number of predictions being compared. A negative MSE-F implies that model i  is 

less accurate compared to the sample mean model, whereas a positive MSE-F means the model i  

is more accurate. The bootstrap is used to compute the p-value for the MSE-F test and proceeds as 

follows. The sample mean model is estimated using the whole sample period of first-release quarterly 

GDP growth (as recommended by Clements and Galvão (2009)). From the model fit we take the 

estimated intercept and the variance of the residuals and simulate multiple time series trajectories 

from the sample mean model assuming Gaussianity.58 For each one of the simulated time series 

trajectories, we apply the same recursive estimation and prediction steps we used with the actual 

data to calculate the MSE-F statistic for that replication. Note, the MAI is held fixed in each 

replication. We set the total number of replications in the bootstrap procedure to 1,000. The 

empirical p-value is calculated as the proportion of MSE-F statistics from the simulations that are 

larger than the MSE-F statistic computed using actual data. We implement the bootstrapped MSE-F 

test for the full sample including the COVID-19 period and a shorter sub-sample excluding the 

COVID-19 period as we did in relation to the RMSE comparisons in Table 3. The results are presented 

in Table 4. 

 

57 Simulations conducted in Clark and McCracken (2005) show that MSE-F bootstrap critical values yield better size results 

compared to those based on asymptotic critical values. West (2006) also recommends using the bootstrap when 

testing for differences in MSEs between nested models. Additionally, Clark and McCracken (2005) show the MSE-F 

test is more powerful than t-type counterparts (such as the DMW test). The reason for this is because, under the 

alternative hypothesis, the F-type test statistic diverges to infinity at a faster rate. 

58 In this way the trajectories are generated under the null hypothesis the nesting models have similar accuracy as the 

benchmark sample mean model. 
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Table 4: MSE-F Test of Equal Prediction Accuracy 

 Sample mean AR(1) FC M1 M2 M3 QA 

Test statistic 

Full sample na –7.12 36.43 132.87 80.47 34.86 135.34 

Pre-COVID-19 na –0.20 –19.77 –14.29 –11.53 –7.71 11.47 

Empirical p-value 

Full sample na 1.00 0.00 0.00 0.00 0.00 0.00 

Pre-COVID-19 na 0.18 0.98 0.68 0.38 0.10 0.00 

Notes: Benchmark model is the sample mean. Empirical p-value computed by bootstrap using 1,000 replications. Full sample is 

1988:Q2–2022:Q2; pre-COVID-19 sample is 1988:Q2–2019:Q4. Bold values denote rejection of the null hypothesis. 

 

The MSE-F test results confirm the findings in Table 3 and they also differ depending on whether 

the test is conducted on the full sample or the pre-COVID-19 sample. For the full sample we strongly 

reject the null hypothesis of equal predictive accuracy in relation to the sample mean model and all 

four FA-U-MIDAS models incorporating monthly information. However, the same is not true for the 

pre-COVID-19 sample, where the null is only rejected for model QA (although model M3 is borderline 

at the 10 per cent level).59 

Overall, these results mirror those of Chauvet and Potter (2013) and Siliverstovs (2020) that relate 

to the accuracy of model predictions of quarterly GDP growth in the United States changing between 

expansions and recessions. In our case, the statistical evidence favouring models incorporating more 

timely information over simpler models based on quarterly information is mostly due to significant 

outperformance during the three-year period covering the COVID-19 crisis. In contrast, during more 

‘normal’ times, the model predictions incorporating monthly information fail to meaningfully improve 

on those of the benchmark sample mean model. Considering Figure A3, this is not surprising. 

Australian quarterly GDP growth is serially uncorrelated. However, model QA which includes some 

information on the current quarter (albeit averaged), was able to consistently outperform the 

benchmark model in both sample periods. This suggests there might be a trade-off between 

incorporating more timely information and increasing model complexity. 

4. Conclusion 

We have made two important contributions to the factor monitoring and prediction literature related 

to Australia. First, we developed a monthly activity indicator with a very long history using a 

‘supervised’ DFM model, with the explicit goal of providing policymakers with a timely snapshot on 

prevailing economic conditions. The time span covered by our MAI (45 years) is unmatched by 

previous work. Second, we have exploited the higher-frequency information imbedded in the MAI in 

a comprehensive nowcasting exercise covering a 35-year period and show statistically significant 

outperformance compared to standard benchmark models is possible. In this regard, our work is the 

first to apply a mixed frequency framework in a systematic manner.60 Further, we show that 

 

59 Note, the null is never rejected for the sample mean and AR(1) models, indicating that there really is no statistical 

difference between the two models. 

60 Anthonisz (2021) is the only study using Australian data that is comparable to our work; however, his focus was 

nowcasting year-ended (annual) GDP growth. 
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outperformance was greatest during the COVID-19 period, emphasising the benefit of using monthly 

data. 

One curiosity related to our results is unlike many other works in which the prediction of GDP growth 

becomes more accurate as more data on the quarter comes to hand, our results show the opposite 

and get less accurate. We speculate this is related to increased parameter uncertainty due to 

estimating progressively larger models. Further, the COVID-19 crisis caused very large outliers 

(otherwise known as ‘leverage points’ due to their effect on the estimated regression fit) which can 

have a substantial effect on parameter estimation. 

Despite this, our results do have some encouraging news for policymakers. By using MIDAS-based 

models incorporating the (timely) MAI, we show it is possible to predict Australian quarterly GDP 

growth more accurately during crisis periods (such as during the COVID-19 crisis) – a situation when 

accuracy is needed most. This comes about because the higher-frequency information contained in 

the MAI means the MIDAS models are quicker to detect abrupt changes, thereby giving policymakers 

more time to react. 

One potential limitation of our work is that we do not redo the pre-selection step to determine the 

targeted predictor dataset at each time point in the out-of-sample prediction evaluation exercise. 

Instead, the ranking is done only once and using the full sample. This could bring some issues with 

our results; however, we are restricted by the unbalanced nature of our dataset which starts with 

only 17 series and is not as large as in other studies which have also mostly considered balanced 

datasets. But since we are not seeking to compare predictive accuracy of factor(s) extracted from a 

targeted predictor dataset to non-targeted predictor datasets this is probably less of a concern. 

Nonetheless, in future iterations, the targeted predictor dataset should be reviewed and updated as 

required to ensure it continues to contain only series that are informative about quarterly GDP 

growth. 

In future work we intend to investigate three extensions: non-traditional data; sparsity; and 

nonlinearity. During the COVID-19 crisis greater use was made of non-traditional data such as 

mobility. We have not included any of these types of data in our extended dataset, although previous 

work suggests there might be merit for doing so (e.g. Choi and Varian (2012), who show internet 

searches can have predictive content). The challenge with some newer non-traditional datasets 

relates to their relatively short histories, making them harder to incorporate into analysis such as 

ours. In our work we used a two-step approach to identify the targeted predictor dataset and then 

extracted the factor afterwards. Recent work from Mosley, Chan and Gibberd (2024) suggests it 

might be possible to combine these two steps into one by incorporating sparsity using a form of 

regularisation into the estimation step. Lastly, the DFM is necessarily a linear model. Perhaps there 

are benefits to nowcasting from considering nonlinear specifications instead. 
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Appendix A: Additional Monthly Activity Indicator Details 

A.1 Additional MAI dataset details 

Table A1: Monthly Activity Extended Dataset 

1978:M2–2022:M7 
(continued next page) 

No Series Source Category Start date End date Transformation 

code 

1 Total employment ABS Hard 1978:M2 2022:M9 LD 

2 Full-time employment ABS Hard 1978:M2 2022:M9 LD 

3 Part-time employment ABS Hard 1978:M2 2022:M9 LD 

4 Unemployment rate ABS Hard 1978:M2 2022:M9 FD 

5 Underemployment rate ABS Hard 1978:M2 2022:M9 FD 

6 Hours worked ABS Hard 1978:M2 2022:M9 LD 

7 Job advertisements DoE Soft 2006:M1 2022:M9 LD 

8 ANZ Job vacancies ANZ Soft 1999:M7 2022:M9 LD 

9 NAB Business conditions NAB Soft 1997:M3 2022:M9 LV 

10 NAB Profitability NAB Soft 1997:M3 2022:M9 LV 

11 NAB Trading conditions NAB Soft 1997:M3 2022:M9 LV 

12 NAB Employment NAB Soft 1997:M3 2022:M9 LV 

13 NAB Forward orders NAB Soft 1997:M3 2022:M9 LV 

14 NAB Stocks NAB Soft 1997:M3 2022:M9 LV 

15 NAB Business confidence NAB Soft 1997:M3 2022:M9 LV 

16 NAB Capacity utilisation NAB Soft 1997:M3 2022:M9 LV 

17 AiG Performance of manufacturing 

index 

Ai Group Soft 2001:M5 2022:M9 LV 

18 AiG Performance of services index Ai Group Soft 2005:M9 2022:M9 LV 

19 AiG Performance of construction index Ai Group Soft 2003:M2 2022:M9 LV 

20 New company registration rate ASIC Soft 1978:M2 2022:M9 LV 

21 ANZ-Roy Morgan Consumer financial 

situation next year 

ANZ-Roy 

Morgan 

Soft 2008:M10 2022:M9 LV 

22 ANZ-Roy Morgan Consumer confidence 

index 

ANZ-Roy 

Morgan 

Soft 2008:M10 2022:M9 LV 

23 WMI Consumer family finances next 12 

months 

WBC-MI Soft 1978:M2 2022:M9 LV 

24 WMI Consumer sentiment index WBC-MI Soft 1978:M2 2022:M9 LV 

25 Retail trade ABS Hard 1982:M4 2022:M8 LD 

26 Sales of new motor vehicles VFACTS Hard 1978:M2 2022:M7 LD 

27 Revenue passengers, international, 

inbound 

DoT Hard 1985:M1 2022:M7 LD 

28 Goods and services credits ABS Hard 1978:M2 2022:M8 LD 

29 Goods and services debits ABS Hard 1978:M2 2022:M8 LD 

30 Building approvals – residential, private ABS Hard 1978:M2 2022:M8 LD 
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Table A1: Monthly Activity Extended Dataset 

1978:M2–2022:M7 
(continued) 

No Series Source Category Start date End date Transformation 

code 

31 Building approvals – housing, total ABS Hard 1978:M2 2022:M8 LD 

32 Building approvals – other dwellings, 

total 

ABS Hard 1978:M2 2022:M8 LD 

33 Building approvals – alterations and 

additions, total 

ABS Hard 1978:M2 2022:M8 LD 

34 Building approvals – non-residential, 

total 

ABS Hard 1978:M2 2022:M8 LD 

35 Auction clearance rate CoreLogic Soft 2008:M5 2022:M9 LV 

36 Credit – total RBA Financial 1978:M2 2022:M8 LD 

37 Credit – housing RBA Financial 1978:M2 2022:M8 LD 

38 Credit – other personal RBA Financial 1978:M2 2022:M8 LD 

39 Credit – business RBA Financial 1978:M2 2022:M8 LD 

40 3-month bank accepted bills/negotiable 

certificates of deposit 

RBA Financial 1978:M2 2022:M9 FD 

41 Yields on Australian government bonds 

– 3-years maturity 

RBA Financial 1992:M6 2022:M9 FD 

42 Yields on Australian government bonds 

– 5-years maturity 

RBA Financial 1978:M2 2022:M9 FD 

43 Yields on Australian government bonds 

– 10-years maturity 

RBA Financial 1978:M2 2022:M9 FD 

44 Yield spread, AGS 3-years less 3-month 

bank bill 

RBA Financial 1992:M6 2022:M9 LV 

45 Yield spread, AGS 5-years less 3-month 

bank bill 

RBA Financial 1978:M2 2022:M9 LV 

46 Yield spread, AGS 10-years less 3-

month bank bill 

RBA Financial 1978:M2 2022:M9 LV 

47 AUD trade-weighted index RBA Financial 1978:M2 2022:M9 LD 

48 S&P/ASX 200 Bloomberg Financial 1978:M2 2022:M9 LD 

49 Index of commodity prices RBA Financial 1978:M2 2022:M9 LD 

50 Home value index CoreLogic Financial 1980:M1 2022:M9 LD 

51 SWIFT customer-to-customer RTGS RBA Financial 1998:M10 2022:M9 LD 

52 Credit card payments RBA Financial 1985:M1 2022:M8 LD 

53 Debit card payments RBA Financial 1994:M5 2022:M8 LD 

Notes: ‘ABS’ is Australian Bureau of Statistics, ‘DoE’ is the Department of Employment, ‘DoT’ is the Department of Transport, ‘WBC-

MI’ is Westpac and Melbourne Institute. ‘Transformation code’ indicates the method used to transform the data to be 

stationary if necessary, ‘FD’ indicates first difference, ‘LD’ indicates log difference and ‘LV’ indicates level. 
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Figure A1: MAI Dataset – Targeted Predictors 

Top 30 series by Wald statistic 

 

Note: Dashed line represents the   ( )2
3 0.1  =  critical value = 6.25. 

Sources: ABS; Ai Group; ANZ; Authors’ calculations; Bloomberg; CoreLogic; NAB; RBA; Westpac and Melbourne Institute. 
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Figure A2: Pattern of Data Availability by Category 

 

Figure A3: Correlogram – Quarterly GDP Growth 

 

Notes: GDP is first release. Dashed lines represent 95 per cent confidence intervals. 
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A.2 Additional MAI estimation details 

Figure A4: Estimated Number of Dynamic Factors 

Log criterion using penalty 3p  

 

The number of dynamic factors is determined by looking for the second ‘region of stability’ in relation 

to cS  (i.e. a value of 0) and checking which value of cq  this corresponds to. See Hallin and 

Liška (2007) for more details. 
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Figure A5: MAI Weighting 

Top 10 by total 

 

Sources: Ai Group; Authors’ calculations; NAB; RBA; Westpac and Melbourne Institute. 
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Figure A6: MAI and Underlying Targeted Predictor Dataset 

 

Note: Grey lines represent the underlying ‘targeted predictor’ dataset; blue line represents the MAI. 
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Appendix B: Additional Modelling Results 

Figure B1: MIDAS Polynomial Weighting Functions 
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