Skip to content
RDP 2016-07: The Efficiency of Central Clearing: A Segmented Markets Approach
Equation (13)
C
C
P
P
,
t
+
1
=
∫
0
1
λ
m
{
M
(
y
m
,
t
+
1
)
(
s
m
,
t
y
m
,
t
+
1
+
s
˜
m
,
t
f
m
,
t
+
1
−
D
˜
(
y
m
,
t
+
1
)
s
˜
m
,
t
max
(
0
,
Z
−
[
y
m
,
t
+
1
−
f
m
,
t
+
1
]
)
−
(
1
−
D
˜
(
y
m
,
t
+
1
)
)
s
˜
m
,
t
Z
+
s
m
,
t
Z
)
+
(
1
−
M
(
y
m
,
t
+
1
)
)
(
s
m
,
t
f
m
,
t
+
1
+
s
˜
m
,
t
y
m
,
t
+
1
+
D
(
y
m
,
t
+
1
)
s
m
,
t
max
(
0
,
Z
−
[
f
m
,
t
+
1
−
y
m
,
t
+
1
]
)
+
(
1
−
D
(
y
m
,
t
+
1
)
)
s
m
,
t
Z
−
s
˜
m
,
t
Z
)
}
d
m
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadoeacaWGqbWaaSbaaSqaaiaadcfacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaOGaeyypa0Zaa8qmaeaacqaH7oaBdaWgaaWcbaGaamyBaaqabaaabaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaacmaabaqbaeaabiqaaaqaaiaad2eadaqadaqaaiaadMhadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaauaabaqadeaaaeaacaWGZbWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaOGaey4kaSIabm4CayaaiaWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccaWGMbWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGcbaGaeyOeI0IabmirayaaiaWaaeWaaeaacaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaGabm4CayaaiaWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccaqGTbGaaeyyaiaabIhadaqadaqaaiaaicdacaGGSaGaamOwaiabgkHiTmaadmaabaGaamyEamaaBaaaleaacaWGTbGaaiilaiaadshacqGHRaWkcaaIXaaabeaakiabgkHiTiaadAgadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaaakiaawUfacaGLDbaaaiaawIcacaGLPaaaaeaacqGHsisldaqadaqaaiaaigdacqGHsislceWGebGbaGaadaqadaqaaiaadMhadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaceWGZbGbaGaadaWgaaWcbaGaamyBaiaacYcacaWG0baabeaakiaadQfacqGHRaWkcaWGZbWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccaWGAbaaaaGaayjkaiaawMcaaaqaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiaad2eadaqadaqaaiaadMhadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaadaqadaqaauaabaqadeaaaeaacaWGZbWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccaWGMbWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaOGaey4kaSIabm4CayaaiaWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccaWG5bWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaaGcbaGaey4kaSIaamiramaabmaabaGaamyEamaaBaaaleaacaWGTbGaaiilaiaadshacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaiaadohadaWgaaWcbaGaamyBaiaacYcacaWG0baabeaakiaab2gacaqGHbGaaeiEamaabmaabaGaaGimaiaacYcacaWGAbGaeyOeI0YaamWaaeaacaWGMbWaaSbaaSqaaiaad2gacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWGTbGaaiilaiaadshacqGHRaWkcaaIXaaabeaaaOGaay5waiaaw2faaaGaayjkaiaawMcaaaqaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiaadseadaqadaqaaiaadMhadaWgaaWcbaGaamyBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaWGZbWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccaWGAbGaeyOeI0Iabm4CayaaiaWaaSbaaSqaaiaad2gacaGGSaGaamiDaaqabaGccaWGAbaaaaGaayjkaiaawMcaaaaaaiaawUhacaGL9baacaWGKbGaamyBaaaa@F53E@